Exercise 5

The beta function is this function of two real variables:

$$
B(p, q)=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t \quad(p>0, q>0)
$$

Make the substitution $t=1 /(x+1)$ and use the result obtained in the example in Sec. 91 to show that

$$
B(p, 1-p)=\frac{\pi}{\sin (p \pi)} \quad(0<p<1)
$$

Solution

Making the prescribed substitution, we have

$$
\begin{aligned}
t & =\frac{1}{x+1} \rightarrow\left\{\begin{aligned}
x & =\frac{1}{t}-1 \\
1-t & =\frac{x}{x+1}
\end{aligned}\right. \\
d t & =-\frac{1}{(x+1)^{2}} d x,
\end{aligned}
$$

so the beta function becomes

$$
\begin{aligned}
B(p, q) & =\int_{\infty}^{0}\left(\frac{1}{x+1}\right)^{p-1}\left(\frac{x}{x+1}\right)^{q-1}\left[-\frac{1}{(x+1)^{2}} d x\right] \\
& =\int_{0}^{\infty} \frac{x^{q-1}}{(x+1)^{p+q-2}}\left[\frac{1}{(x+1)^{2}} d x\right] \\
& =\int_{0}^{\infty} \frac{x^{q-1}}{(x+1)^{p+q}} d x .
\end{aligned}
$$

Now substitute $q=1-p$.

$$
\begin{aligned}
B(p, 1-p) & =\int_{0}^{\infty} \frac{x^{(1-p)-1}}{(x+1)^{p+(1-p)}} d x \\
& =\int_{0}^{\infty} \frac{x^{-p}}{x+1} d x
\end{aligned}
$$

In order to evaluate this integral, consider the corresponding function in the complex plane,

$$
f(z)=\frac{z^{-p}}{z+1},
$$

and the contour in Figure 1. Singularities occur where the denominator is equal to zero.

$$
\begin{gathered}
z+1=0 \\
z=-1
\end{gathered}
$$

Because z^{-p} can be written in terms of the logarithm function, a branch cut has to be chosen.

$$
z^{-p}=\exp (-p \log z)
$$

Figure 1: This is essentially Fig. 110 in the textbook with the singularity at $z=-1$ marked. The squiggly line represents the branch cut $(|z|>0,0<\theta<2 \pi)$.

We choose it to be the axis of positive real numbers so that the contour doesn't have to be indented more than once.

$$
\begin{aligned}
z^{-p} & =\exp [-p(\ln r+i \theta)], \quad(|z|>0,0<\theta<2 \pi) \\
& =r^{-p} e^{-i p \theta},
\end{aligned}
$$

where $r=|z|$ is the magnitude of z and $\theta=\arg z$ is the argument of z. According to Cauchy's residue theorem, the integral of $z^{-p} /(z+1)$ around the closed contour is equal to $2 \pi i$ times the sum of the residues at the enclosed singularities.

$$
\oint_{C} \frac{z^{-p}}{z+1} d z=2 \pi i \operatorname{Res}_{z=-1} \frac{z^{-p}}{z+1}
$$

This closed loop integral is the sum of four integrals, one over each arc in the loop.

$$
\int_{L_{1}} \frac{z^{-p}}{z+1} d z+\int_{L_{2}} \frac{z^{-p}}{z+1} d z+\int_{C_{\rho}} \frac{z^{-p}}{z+1} d z+\int_{C_{R}} \frac{z^{-p}}{z+1} d z=2 \pi i \underset{z=-1}{\operatorname{Res}} \frac{z^{-p}}{z+1}
$$

The parameterizations for the arcs are as follows.

$$
\begin{array}{rlll}
L_{1}: & z=r e^{i 0}, & r=\rho \quad \rightarrow \quad r=R \\
L_{2}: & z=r e^{i 2 \pi}, & r=R \quad \rightarrow \quad r=\rho \\
C_{\rho}: & z=\rho e^{i \theta}, & \theta=2 \pi \quad \rightarrow \quad \theta=0 \\
C_{R}: & z=R e^{i \theta}, & \theta=0 \quad \rightarrow \quad \theta=2 \pi
\end{array}
$$

As a result,

$$
\begin{aligned}
2 \pi i \operatorname{Res}_{z=-1} \frac{z^{-p}}{z+1} & =\int_{\rho}^{R} \frac{\left(r e^{i 0}\right)^{-p}}{r e^{i 0}+1}\left(d r e^{i 0}\right)+\int_{R}^{\rho} \frac{\left(r e^{i 2 \pi}\right)^{-p}}{r e^{i 2 \pi}+1}\left(d r e^{i 2 \pi}\right)+\int_{C_{\rho}} \frac{z^{-p}}{z+1} d z+\int_{C_{R}} \frac{z^{-p}}{z+1} d z \\
& =\int_{\rho}^{R} \frac{r^{-p}}{r+1} d r+\int_{R}^{\rho} \frac{r^{-p} e^{-i 2 p \pi}}{r+1} d r+\int_{C_{\rho}} \frac{z^{-p}}{z+1} d z+\int_{C_{R}} \frac{z^{-p}}{z+1} d z \\
& =\int_{\rho}^{R} \frac{r^{-p}}{r+1} d r-\int_{\rho}^{R} \frac{r^{-p} e^{-i 2 p \pi}}{r+1} d r+\int_{C_{\rho}} \frac{z^{-p}}{z+1} d z+\int_{C_{R}} \frac{z^{-p}}{z+1} d z \\
& =\left(1-e^{-i 2 p \pi}\right) \int_{\rho}^{R} \frac{r^{-p}}{r+1} d r+\int_{C_{\rho}} \frac{z^{-p}}{z+1} d z+\int_{C_{R}} \frac{z^{-p}}{z+1} d z .
\end{aligned}
$$

Take the limit now as $\rho \rightarrow 0$ and $R \rightarrow \infty$. As long as $0<p<1$ the integral over C_{ρ} tends to zero, and as long as $p>0$ the integral over C_{R} tends to zero. Proof for these statements will be given at the end.

$$
\left(1-e^{-i 2 p \pi}\right) \int_{0}^{\infty} \frac{r^{-p}}{r+1} d r=2 \pi i \underset{z=-1}{\operatorname{Res}} \frac{z^{-p}}{z+1}
$$

The residue at $z=-1$ can be calculated by evaluating the numerator at -1 .

$$
\operatorname{Res}_{z=-1} \frac{z^{-p}}{z+1}=(-1)^{-p}=\left(e^{i \pi}\right)^{-p}=e^{-i p \pi}
$$

So then

$$
\left(1-e^{-i 2 p \pi}\right) \int_{0}^{\infty} \frac{r^{-p}}{r+1} d r=2 \pi i e^{-i p \pi}
$$

Divide both sides by $1-e^{-i 2 p \pi}$ and simplify.

$$
\begin{aligned}
\int_{0}^{\infty} \frac{r^{-p}}{r+1} d r & =2 \pi i \frac{e^{-i p \pi}}{1-e^{-i 2 p \pi}} \\
& =2 \pi i \frac{1}{e^{i p \pi}-e^{-i p \pi}} \\
& =2 \pi i \frac{1}{2 i \sin p \pi} \\
& =\frac{\pi}{\sin p \pi}
\end{aligned}
$$

Changing the dummy integration variable to x,

$$
\int_{0}^{\infty} \frac{x^{-p}}{x+1} d x=\frac{\pi}{\sin p \pi}, \quad 0<p<1 .
$$

Therefore,

$$
B(p, 1-p)=\frac{\pi}{\sin p \pi}, \quad 0<p<1 .
$$

The Integral Over C_{ρ}

Our aim here is to show that the integral over C_{ρ} tends to zero in the limit as $\rho \rightarrow 0$. The parameterization of the small circular arc in Figure 1 is $z=\rho e^{i \theta}$, where θ goes from 2π to 0 .

$$
\begin{aligned}
\int_{C_{\rho}} \frac{z^{-p}}{z+1} d z & =\int_{2 \pi}^{0} \frac{\left(\rho e^{i \theta}\right)^{-p}}{\rho e^{i \theta}+1}\left(\rho i e^{i \theta} d \theta\right) \\
& =\int_{2 \pi}^{0} \frac{\rho^{1-p}}{\rho e^{i \theta}+1}\left[i e^{i \theta(1-p)} d \theta\right]
\end{aligned}
$$

Take the limit of both sides as $\rho \rightarrow 0$.

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} \frac{z^{-p}}{z+1} d z=\lim _{\rho \rightarrow 0} \int_{2 \pi}^{0} \frac{\rho^{1-p}}{\rho e^{i \theta}+1}\left[i e^{i \theta(1-p)} d \theta\right]
$$

The limits of integration are constant, so the limit may be brought inside the integral.

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} \frac{z^{-p}}{z+1} d z=\int_{2 \pi}^{0} \lim _{\rho \rightarrow 0} \frac{\rho^{1-p}}{\rho e^{i \theta}+1}\left[i e^{i \theta(1-p)} d \theta\right]
$$

Provided that $0<p<1, \rho^{1-p}$ tends to zero. Therefore,

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} \frac{z^{-p}}{z+1} d z=0
$$

The Integral Over C_{R}

Our aim here is to show that the integral over C_{R} tends to zero in the limit as $R \rightarrow \infty$. The parameterization of the large circular arc in Figure 1 is $z=R e^{i \theta}$, where θ goes from 0 to 2π.

$$
\begin{aligned}
\int_{C_{R}} \frac{z^{-p}}{z+1} d z & =\int_{0}^{2 \pi} \frac{\left(R e^{i \theta}\right)^{-p}}{R e^{i \theta}+1}\left(R i e^{i \theta} d \theta\right) \\
& =\int_{0}^{2 \pi} \frac{R^{1-p}}{R e^{i \theta}+1}\left[i e^{i \theta(1-p)} d \theta\right] \\
& =\int_{0}^{2 \pi} \frac{R^{-p}}{e^{i \theta}+\frac{1}{R}}\left[i e^{i \theta(1-p)} d \theta\right]
\end{aligned}
$$

Take the limit of both sides as $R \rightarrow \infty$. Since the limits of integration are constant, the limit may be brought inside the integral.

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z^{-p}}{z+1} d z=\int_{0}^{2 \pi} \lim _{R \rightarrow \infty} \frac{R^{-p}}{e^{i \theta}+\frac{1}{R}}\left[i e^{i \theta(1-p)} d \theta\right]
$$

Provided that $p>0$, the limit is zero because of R^{-p} in the numerator. Therefore,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z^{-p}}{z+1} d z=0
$$

